Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38653896

RESUMO

The modern world requires a chemical industry that can run at low production costs while producing high-quality products with minimal environmental impact. The development of environmentally friendly, cost-effective, and efficient wastewater treatment materials remains a major problem for the sustainable approach. We prepared nanoscale cadmium sulfide (CdS)-enwrapped polypyrrole (PPy) polymer composites for degradation of organic pollutants. The prepared CdS@PPy nanocomposites were characterized by powder X-ray diffraction, scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV) absorption spectroscopy, indicating proper intercalation between CdS and PPy. Consequently, the catalytic efficiency of the synthesized hybrid nanocomposites was analyzed through the degradation of methylene blue (MB) and rhodamine B (Rh B) under visible light irradiation. The measured degradation efficiency of the dye solutions under the photolysis process is about 18% and 23% for MB and Rh B dye, respectively. Furthermore, the recycle test result concludes that the CdS@PPy composite exhibits 91% and 89% of MB and Rh B dye degradation efficiency even at the 4th cycle, respectively. The positive synergistic impact of CdS and PPy may be the result of effective photocatalytic degradation of MB and RhB.

2.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673251

RESUMO

Novel flake-like Ni1-xSnxO2 particles were successfully prepared by template-free hydrothermal synthesis. The prepared samples were investigated for their properties by different characterization techniques. Scanning micrographs showed that the obtained particles consisted of nanoflakes. The X-ray diffraction results of the Ni1-xSnxO2 revealed the formation of mixed-phase Ni/SnO2 having the typical tetragonal structure of SnO2, and the cubic structure of Ni in a nanocrystalline nature. The doping with Ni had a certain influence on the host's lattice structure of SnO2 at different doping concentrations. Confirmation of the functional groups and the elements in the nanomaterials was accomplished using FTIR and EDS analyses. The electrochemical performance analysis of the prepared nanomaterials were carried out with the help of the CV, GCD, and EIS techniques. The specific capacitance of the synthesized nanomaterials with different concentrations of Ni dopant in SnO2 was analyzed at different scanning rates. Interestingly, a 5% Ni-doped SnO2 nanocomposite exhibited a maximum specific capacitance of 841.85 F g-1 at 5 mV s-1 in a 6 M KOH electrolyte. Further, to boost the electrochemical performance, a redox additive electrolyte was utilized, which exhibited a maximum specific capacitance of 2130.33 at 5 mV s-1 and an excellent capacitance retention of 93.22% after 10,000 GCD cycles. These excellent electrochemical characteristics suggest that the Ni/SnO2 nanocomposite could be utilized as an electrode material for high-performance supercapacitors.

3.
ACS Omega ; 9(7): 8123-8138, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405527

RESUMO

New cobalt(II), copper(II), and zinc(II) Schiff metal complexes were synthesized by the condensation reaction of 4-nitrobenzene-1,2-diamine with 3-4-(diethylamino)-2-hydroxybenzaldehyde. Fourier transform infrared, nuclear magnetic resonance, ultraviolet-visible, electron paramagnetic resonance, and high-resolution electrospray ionization mass spectrometry and powder X-ray diffraction were used to characterize the synthesized H2L and its metal complexes. Conductance measurements, magnetic moment estimation, and metal estimation have all been determined and discussed. The electrochemical properties of the synthesized compounds have been determined and discussed using cyclic voltammetry. The molecular structures of H2L and its metal complexes have been optimized using the B3LYP functional and the 6-31G (d,p) basis set, and their parameters have been discussed. The quantum chemical properties of these synthesized compounds have been predicted through charge distribution and molecular orbital analysis. The biological properties of the synthesized compounds' antioxidant, antifungal, and antibacterial activity have been studied and discussed. Furthermore, H2L and its complexes have been docked with HER2-associated target proteins in breast cancer.

4.
J Int Soc Prev Community Dent ; 6(6): 590-596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28032053

RESUMO

AIMS AND OBJECTIVES: Dimension of dental implant is an important parameter which has a considerable impact on the biomechanical load transfer characters and its prognosis. Excessive stress in the bone-implant interface may result in the failure of the implant. The aim of this study was to evaluate the impact of implant diameter and length on neighboring tissues around the implant. The results of the study will help in developing a scientific methodology to select appropriate implant diameter and length. MATERIALS AND METHODS: In this study, tapered implants of different diameter and length were numerically analyzed using bone-implant models developed from computed tomography generated images of mandible with osseointegrated implants. The impact of various diameters on stress distribution was examined using implants with a length of 13 mm and diameters of 3.5 mm, 4.3 mm and 5.0 mm. Implants with a diameter of 4.3 mm and lengths of 10 mm, 13 mm, 16 mm was developed to examine the impact of various implant length. All materials were assumed to be linearly elastic and isotropic. Masticatory load was applied in a natural direction, oblique to the occlusal plane. The Statistical Package for the Social Sciences software package was used for statistical analysis. RESULTS: Maximum von Mises stresses were located around the implant neck. It was demonstrated that there was statistically significant decrease in von Mises stress as the implant diameter increased. CONCLUSION: Within the limitations of this study there was statistically significant decrease in von Mises stress as the implant diameter increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...